Mathematics: analysis and approaches	
Higher Level	Name
Paper 1	
Date:	
2 hours	

Instructions to candidates

- Write your name in the box above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your name on each answer sheet and attach them to this examination paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [110 marks].

exam: 12 pages

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer **all** questions in the boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 6]

Let
$$f(x) = \frac{1}{2x+1}$$
 and $g(x) = 2x-3$. Given that $h(x) = (f \circ g)(x)$, find:

(a)
$$h(x)$$
; [2]

(b)
$$h^{-1}(x)$$
. [4]

[2]

The first derivative of a function g is given by $(x-4)$	3
--	---

(a)	Find the second derivative of g .	[2]
-----	-------------------------------------	-----

(b) Write down the value of g''(4). [1]

(c)	The x -coordinate of point A on the graph of g is 4 .	Explain why A is not a point of
	inflexion.	

• • • • •	 	 • • •	 	 • • • •	 	 • • • •	• • • •	 		• • • •	• • • •	 	 	 	
	 	 	 	 • • • •	 	 		 	• • • •	• • • •		 	 	 	
• • • • •	 	 	 	 • • • •	 	 		 				 	 	 	
	 	 	 	 • • • •	 	 		 	• • • •			 	 	 	
	 	 	 	 • • • •	 	 		 	• • • •	• • • • •		 	 	 	
	 	 	 	 • • • •	 	 		 	• • • • •	• • • •		 	 	 	
• • • • •	 	 	 	 • • • •	 	 		 				 	 	 	
	 	 	 	 • • • •	 	 		 				 	 	 	
	 	 	 	 • • • •	 	 		 				 	 	 	

Given that $\log_3 2 = x$ and $\log_3 5 = y$, express each of the following in terms of x and y.

(a) $\log_3 20$ [2]

(b) $\log_3(7\frac{13}{16})$ [2]

(c) $\log_5 8$ [3]

• • • • •	 • • •	• • •	• • • •	 	• • • •	• • • •	• • • •	 • • • •	• • • •	 • • • •	 	• • • •	• • • •	 		 • • • •	• • •	 	• • • •	• • • • •	
• • • • •	 	• • •	• • • •	 			• • • •	 • • • •		 • • • •	 			 		 		 • • • •			
• • • • •	 			 				 		 • • • •	 			 		 		 			
	 			 				 		 	 			 	\cdots	 		 $\cdots \\$			

Consider the infinite series $1 + \ln x + (\ln x)^2 + \cdots$.

- (a) Find the values of x such that the series converges. [3]
- (b) Find the value of *x* such that the series converges to 2. [3]

The point P(p,-1) lies on the curve $7y^3 + xy^2 - x^2y + 1 = 0$. Given that the gradient of the line tangent to the curve at P is $\frac{5}{18}$, find the value of p. [6]

Solve the equation $8\sin x \cos x = \sqrt{12}$, for $0 \le x \le \frac{\pi}{2}$.

If α and β are the roots of the equation $2x^2-x+4=0$, find a quadratic equation with integer coefficients whose roots are $\alpha+2$ and $\beta+2$.

• • • • • • • • • • • • • • • • • • • •	 	 		
	 	 	•••••	
	 	 		• • • • • • • • • • • • • • • • • • • •
	 	 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

The figure shows a sector OAB of a circle of radius r cm and centre O, where $AOB = \theta$.

The value of r is increasing at the rate of 2 cm per second and the area of the sector is increasing at the rate of 2π cm² per second. At the moment when r=3 cm and $\theta=\frac{\pi}{4}$, find the rate of increase of θ indicating the units for this rate of change.

1	

Do **not** write solutions on this page.

Section B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

10. [Maximum mark: 16]

The function g is defined by $g(x) = \frac{3x}{x^2 + 7}$.

(a) Show that
$$g'(x) = \frac{21 - 3x^2}{(x^2 + 7)^2}$$
. [4]

(b) Find
$$\int \frac{3x}{x^2 + 7} dx$$
. [5]

The diagram below shows a portion of the graph of g.

(c) The shaded region is enclosed by the graph of g, the x-axis, and the lines $x = \sqrt{7}$ and x = a. This region has an area of $\ln 8$. Find the value of a. [7]

Do **not** write solutions on this page.

11. [Maximum mark: 17]

Consider the complex number z such that |z| = |z - 3i|.

(a) Show that the imaginary part of
$$z$$
 is $\frac{3}{2}$. [2]

- (b) Let z_1 and z_2 be the two possible values of z, such that |z| = 3
 - (i) Sketch a diagram to show the points represent z_1 and z_2 in the complex plane, where z_1 is in the first quadrant. [2]

(ii) Show that
$$\arg z_1 = \frac{\pi}{6}$$
. [1]

(iii) Write down the value of $\arg z_2$. [1]

(c) Given that
$$\arg\left(\frac{z_1^k z_2}{2i}\right) = \pi$$
, find a value of k . [5]

(d) Find an expression for the sum of the first 20 terms of the series

$$\ln\left(x^2\right) + \ln\left(\frac{x^2}{y}\right) + \ln\left(\frac{x^2}{y^2}\right) + \ln\left(\frac{x^2}{y^3}\right) + \cdots$$

Giving your answer in the form $\ln\left(\frac{x^m}{y^n}\right)$ where m and n are positive integers. [6]

12. [Maximum mark: 22]

(a) Using an identity for
$$\cos 2\theta$$
, show that $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$. [2]

(b) Hence, find
$$\int \cos^2 x \, dx$$
 [4]

Functions f and g are defined such that $f(x) = 4\cos x$ and $g(x) = \sec x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. Let R be the region enclosed by the two functions.

- (c) Find the value of the x-coordinate for each of the two points of intersection of f and g. [4]
- (d) Sketch the graphs of f and g and clearly shade the region R. [3]

The region R is rotated through 2π radians about the x-axis to generate a solid.

(e) (i) Write down a definite integral that represents the volume of the solid.

(ii) Hence, find the volume of the solid. [9]